Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 2: Adjoint Approximations and Extensions
نویسندگان
چکیده
This paper continues the convergence analysis in [M. Giles and S. Ulbrich, SIAM J. Numer. Anal., 48 (2010), pp. 882–904] of discrete approximations to the linearized and adjoint equations arising from an unsteady one-dimensional hyperbolic equation with a convex flux function. We consider a simple modified Lax–Friedrichs discretization on a uniform grid, and a key point is that the numerical smoothing increases the number of points across the nonlinear discontinuity as the grid is refined. It is proved that there is convergence in the discrete approximation of linearized output functionals even for Dirac initial perturbations and pointwise convergence almost everywhere for the solution of the adjoint discrete equations. In particular, the adjoint approximation converges to the correct uniform value in the region in which characteristics propagate into the discontinuity. Moreover, it is shown that the results of [M. Giles and S. Ulbrich, SIAM J. Numer. Anal., 48 (2010), pp. 882–904] and the present paper hold also for quite general nonlinear initial data which contain multiple shocks and for which shocks form at a later time and/or merge.
منابع مشابه
Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 1: Linearized Approximations and Linearized Output Functionals
This paper analyzes the convergence of discrete approximations to the linearized equations arising from an unsteady one-dimensional hyperbolic equation with a convex flux function. A simple modified Lax–Friedrichs discretization is used on a uniform grid, and a key point is that the numerical smoothing increases the number of points across the nonlinear discontinuity as the grid is refined. It ...
متن کاملAccuracy of High Order and Spectral Methods for Hyperbolic Conservation Laws with Discontinuous Solutions
Higher order and spectral methods have been used with success for elliptic and parabolic initial and boundary value problems with smooth solutions. On the other hand, higher order methods have been applied to hyperbolic problems with less success, as higher order approximations of discontinuous solutions suffer from the Gibbs phenomenon. We extend past work and show that spectral methods yield ...
متن کاملStability in the L norm via a linearization method for nonlinear hyperbolic systems
We discuss the existence and uniqueness of discontinuous solutions to adjoint problems associated with nonlinear hyperbolic systems of conservation laws. By generalizing the Haar method for Glimm-type approximations to hyperbolic systems, we establish that entropy solutions depend continuously upon their initial data in the natural L norm.
متن کاملAdjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws
We propose a rigorous procedure to obtain the adjoint-based gradient representation of cost functionals for the optimal control of discontinuous solutions of conservation laws. Hereby, it is not necessary to introduce adjoint variables for the shock positions. Our approach is based on stability properties of the adjoint equation. We give a complete analysis for the case of convex scalar conserv...
متن کاملError Estimation and Adaptation in Hybridized Discontinous Galerkin Methods
This paper presents an output-based error estimation and adaptation strategy for hybridized discontinuous Galerkin discretizations of firstand second-order systems of conservation laws. A discrete adjoint solution is obtained by a Schurcomplement solver similar to that used in the primal problem. An error estimate is obtained by computing the adjoint on an enriched solution space that consists ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2010